MATERIAL OVERVIEW

- An age-hardenable nickel-based superalloy designed specifically for use as feedstock in powder bed fusion. ABD®-900AM is optimised for high creep and tensile strength, and corrosion/oxidation resistance, with a working temperature range up to 900°C in its age-hardened state.
- The new alloy has excellent creep strength – similar to alloy 939 and Ni 738 – while having superior resistance to cracking during manufacture and heat treatment.

Designed to be free of solidification, liquidation and strain-age cracks, ABD®-900AM is 40% γ′ phase and showcases exceptional printability for such a high temperature strengthened alloy. It is suitable for complex components within the Aerospace, Power, Automotive and Space industries.

KEY PROPERTIES

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical(^1,2) (900°C)</td>
<td></td>
</tr>
<tr>
<td>Yield strength (MPa)</td>
<td>z 574</td>
</tr>
<tr>
<td></td>
<td>xy 568</td>
</tr>
<tr>
<td>Ultimate tensile strength (MPa)</td>
<td>z 582</td>
</tr>
<tr>
<td></td>
<td>xy 593</td>
</tr>
<tr>
<td>Elongation at failure %</td>
<td>z 13</td>
</tr>
<tr>
<td></td>
<td>xy 7</td>
</tr>
<tr>
<td>Area reduction at failure %</td>
<td>z 12</td>
</tr>
<tr>
<td></td>
<td>xy 7</td>
</tr>
<tr>
<td>Thermo-physical(^3) (25-1200°C)</td>
<td></td>
</tr>
<tr>
<td>Thermal conductivity (W(m°C(^{-1})))</td>
<td>11.0 - 30.1</td>
</tr>
<tr>
<td>CTE (Linear)/x10-6°C(^{-1})</td>
<td>11.4 - 19.2</td>
</tr>
<tr>
<td>Physical(^4)</td>
<td></td>
</tr>
<tr>
<td>Density/ g cm(^{-3})</td>
<td>8.395</td>
</tr>
<tr>
<td>Melting range/ °C</td>
<td>1305-1380</td>
</tr>
</tbody>
</table>

\(^1\)strain rate of 10\(^{-3}\) s\(^{-1}\), \(^2\)after recrystallisation anneal and full heat treatment, \(^3\)after full heat treatment, \(^4\)as-printed

PRINTABILITY

ABD®-900AM shows high part density and no cracking when printed with standard Ni 718 parameters.

POWDER CHARACTERISTICS

Particle size distributions:

- Laser Beam Melting (powder bed): 15-53 μm
- Electron Beam Melting (powder bed): 45-106 μm
- Directed energy deposition (LMD): 45-106 μm
- Custom size distributions available on request

ABD®-900AM is well suited for gas atomisation

ABD®-900AM is available in batch sizes suitable for R&T and full production.

Contact: powder@eramet.com
www.aubertduval.com
TENSILE PROPERTIES

The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval.

ABD® is a registered trademark of Alloys (formerly OxMet Technologies).

Tensile properties of additively manufactured ABD®-900AM and Ni718, evaluated at a strain rate of 10^{-3}s^{-1}, all other test conditions in accordance to ASTM E8/E8M-16a/E21. No HIP applied. Yield Strength (YS) shown is Rp_{0.2} stress, Ultimate

TENSILE DUCTILITY & REDUCTION OF AREA

The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval.

ABD® is a registered trademark of Alloys (formerly OxMet Technologies).
LONG TERM STABILITY

Tensile properties of additively manufactured ABD®-900AM after full heat treatment cycle followed by long term heat exposure. Yield strength evaluated at 650 °C with a strain rate of 10⁻⁴ s⁻¹. Data for Alloy 718 and Alloy 718Plus taken from “Advanced Materials and Processes, December 2006”

FATIGUE PROPERTIES

Low cycle fatigue properties of additively manufactured ABD®-900AM after full heat treatment cycle. Tested in accordance to ASTM E606.

STRESS RUPTURE PROPERTIES

Stress rupture properties of additively manufactured ABD®-900AM after recrystallisation anneal and full heat treatment cycle. Tested in accordance to ASTM E139. Larson-Miller Parameter evaluated with Temperature (T) in Kelvin and Time (t) in hours. Ni718 is additively manufactured and fully heat treated.
THERMOPHYSICAL PROPERTIES

Linear coefficient of thermal expansion measured according to ASTM E228. Average of heating and cooling curves.\(^1\)

Thermal conductivity (κ) of ABD®-900AM is calculated according to ASTM standards from measured values of density (ρ), specific heat capacity (C_p), and thermal diffusivity (α): $\kappa = \rho C_p \alpha$.\(^1\)

\(^1\)ABD®-900AM after full heat treatment, \(^2\)ABD®-900AM in an as-printed condition

MICROSTRUCTURE & HEAT TREATMENT

Full heat treatment: 1060°C/2hrs + 850°C/4 hrs + 760°C/16 hrs

Recrystallisation anneal: 1240°C/2hrs, followed by full heat treatment

HIP parameter: 1160°C/100 MPa / 3 hrs

Typical EBSD maps and grain structures of ABD®-900AM after the corresponding heat treatments.

Contact: powder@eramet.com - www.aubertduval.com

The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval. ABD® is a registered trademark of Alloyed (formerly OxMet Technologies).