

Powder for Additive Manufacturing

MATERIAL OVERVIEW

Stellar Ni625 is a Nickel-based superalloy with:

- Very good resistance to oxidation
- Good creep properties and ductility until 900°C
- Excellent corrosion resistance
- Good low temperature toughness.

STANDARDS

- European standards
 - 22Mo9Nb
 - 2.4856
- US Standards
 - UNS N06625
 - ASTM F3056

KEY PROPERTIES

Property	Unit	20°C	600°C
Density	g/cm ³	8.4	8.3
Thermal conductivity	W/(m*K)	9.7	18.1
Thermal expansion	10 ⁻⁶ K ⁻¹	13.0	14.4

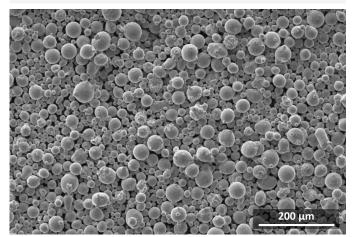
² Source: data sheet (by conventional metallurgy)

https://www.aubertduval.com/wp-media/uploads/sites/2/2017/06/PER625_FR.pdf

CHEMICAL COMPOSITION

	Ni	Cr	Мо	Nb	Fe	Mn	Si	Ti
Mini	Bal.	20.00	8.00	3.15	-	8	-	2.0
Maxi		23.00	10.00	4.15	5.00	0.50	0.50	0.40
	Al	Co	С	0	Ν	F)	S
Mini	-	-	-	-	-			-
Maxi	0.40	0.10	0.10	0.03	0.03	3 0.0	15 (0.015

POWDER CHARACTERISTICS


Particle size distributions:

Laser Powder Bed Fusion (LPBF): 15-53 µm

Electron Beam Melting (EBM): 45-106 µm

Directed Energy Deposition (DED): 45-106 µm

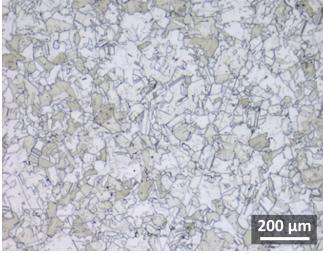
Custom size distributions available on request

Stellar Ni625 is developed for VIM gas atomization and available for R&T and full production. Typical powder morphology.

Contact: powder@aubertduval.com / www.aubertduval.com

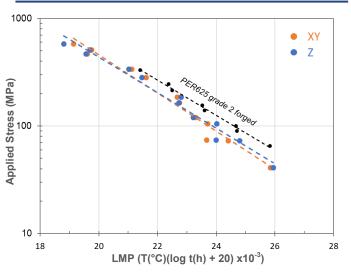
PDS_231025_Ni625-Stellar_EN_V1

The data provided in this document represent typical or average values rather than maximum or minimum guaranteed values. The applications indicated for the grades described are given by guidance only in order to help the reader in his/her personal assessment. Please note that these do not constitute a guarantee whether implicit or explicit as to whether the grade selected is suited for specific requirements. Aubert & Duval's liability shall not, under any circumstances, extend to product selection or to the consequences of this selection.



Stellar Ni625

CASE STUDY: Ni625 HIP


PRINTABILITY & MICROSTRUCTURE AFTER HEAT TREATMENT

Excellent metallurgical health after SLM process and HIP with Stellar Ni625 powders (Reference EOS M400-4, 625 standard parameters, layer thickness: 40μ m). No preheating of the base plate needed for production. No cracks observed after building the sample.

Microstructure for Stellar Ni625 obtained after HIP at 1160°C 1020 bars 3h. Etching made using Kalling reagent (left) and MAC4 reagent (right).

STRESS RUPTURE PROPERTIES

Stress rupture properties of additively manufactured Stellar Ni625 after HIP. Tested in accordance to ISO 204. Larson Miller Parameter evaluated with Temperature (T) in Celsius and Time (t) in hours.

CORROSION RESISTANCE

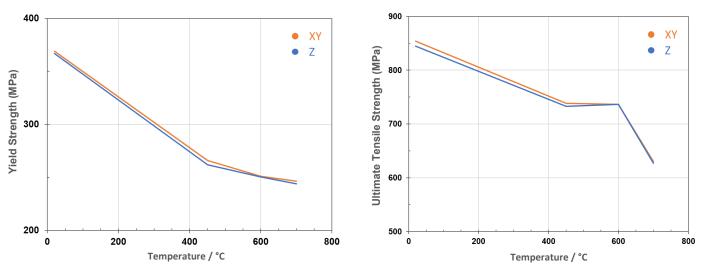
Thermal treatment	Orientation	Corrosion rate (mm/year)
HIP 1160°C	XY	0.3
1020 bars 3h	Z	0.3

Intergranular corrosion in ferric sulfate according to ASTM G28 for Stellar Ni625 after HIP in the two directions: XY and Z.

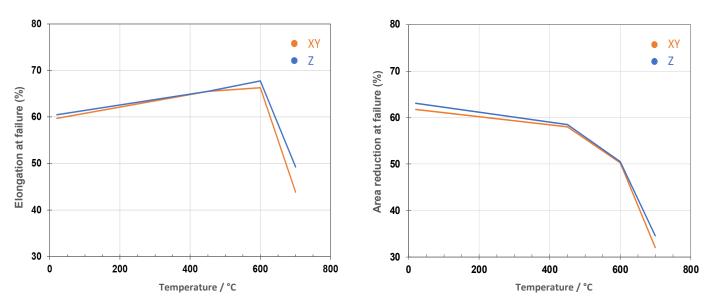
CHARPY V

Thermal treatment	Orientation	KCV moy (J/cm²)
HIP 1160°C	XY	243
1020 bars 3h	Z	254

Resilience test according to ISO 1481 for Stellar Ni625 after HIP in the two directions: XY and Z.


Contact: powder@aubertduval.com / www.aubertduval.com

The data provided in this document represent typical or average values rather than maximum or minimum guaranteed values. The applications indicated for the grades described are given by guidance only in order to help the reader in his/her personal assessment. Please note that these do not constitute a guarantee whether implicit or explicit as to whether the grade selected is suited for specific requirements. Aubert & Duval's liability shall not, under any circumstances, extend to product selection or to the consequences of this selection.


Stellar Ni625

Tensile properties of additively manufactured Stellar Ni625 after HIP treatment. Properties evaluated at a strain rate of 10⁻⁴ s⁻¹, all other test conditions in accordance to NF EN 2002-1 and NF EN 2002-2. Yield Strength (YS) shown is Rp0.2% stress, Ultimate Tensile Strength (UTS) is stress at maximum force.

TENSILE DUCTILITY & REDUCTION OF AREA

Tensile properties of additively manufactured Stellar Ni625 after HIP treatment. Properties evaluated at a strain rate of 10⁻⁴ s⁻¹, all other test conditions in accordance to NF EN 2002-1 and NF EN 2002-2. Elongation and area reduction were measured after failure as per the standards.

Contact: powder@aubertduval.com

www.aubertduval.com

The data provided in this document represent typical or average values rather than maximum or minimum guaranteed values. The applications indicated for the grades described are given by guidance only in order to help the reader in his/her personal assessment. Please note that these do not constitute a guarantee whether implicit or explicit as to whether the grade selected is suited for specific requirements. Aubert & Duval's liability shall not, under any circumstances, extend to product selection or to the consequences of this selection.

