

Nickel-based alloy MPN

POWDER FOR HIPPED PARTS

> TYPICAL COMPOSITION (weight %)

С	Со	Ni	Cr	Мо	Al	Ti	Fe
< 0.020	15,7	Base	11,5	6,5	4,35	4,35	0,5

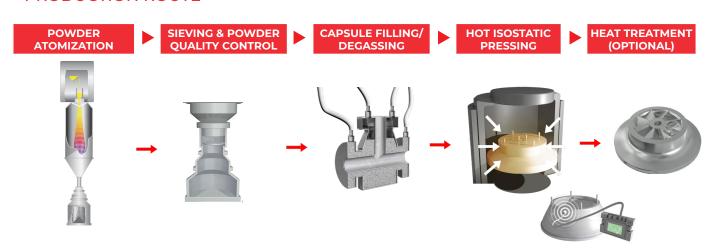
> PHYSICAL PROPERTIES

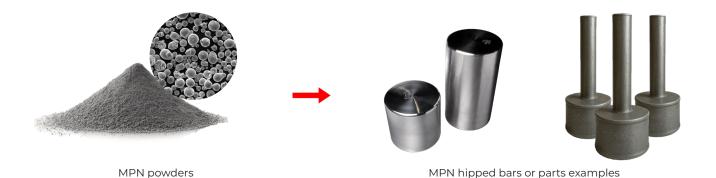
Density (g/cm³):

• 7.99

> PHYSICAL METALLURGY

MPN alloy has an austenitic matrix structure. High temperature strengthening is produced by the precipitation of the ordered intermetallic gamma prime phase, Ni $_3$ (Al, Ti), and by solid solution hardening principally by molybdenum. Heat treatment therefore comprises partial solutioning slightly below the gamma prime solvus temperature (~1195°C), followed by rapid cooling and subsequent aging, in order to control the size and distribution of the γ' precipitates.

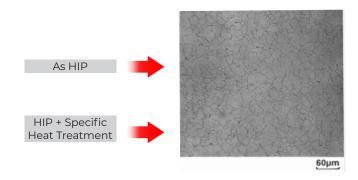

> APPLICATIONS


MPN alloy is employed for components demanding a high yield strength above 700°C, or a combination of high yield strength and good corrosion and oxidation resistance up to temperatures of more than 1000°C.

Typical applications are therefore:

- Highly stressed static and rotating components, such as disks and wheels.
- Components such as diffuser nozzles, requiring high yield strength and excellent corrosion resistance up to 1050°C.
- Tools for forging and isothermal forging process

> PRODUCTION ROUTE



> TYPICAL MECHANICAL PROPERTIES

Different final properties depending on heat treatment and microstructure.


THIN GRAIN SIZE FOR STRENGTH & FATIGUE RESISTANCE

Thin grain size 8-12 ASTM

	Tensile Test				Grain	l laudu aaa	
	UTS (MPa)		YS0.2 (MPa)	Elongation (%)	size (ASTM)	Hardness (HRC)	
As HIP	20°C	>1340	>780	>15	8 to 10	35/39	
HIP + Specific	20°C	>1410	>960	>13		37 / 40	
Heat treat- ment	700°C	>1200	>800	>15	10 to 12		

LARGE GRAIN SIZE FOR CREEP RESISTANCE

Large grain size 4-6 ASTM

	Те	Grain	Hardness			
UTS (MPa)		YS0.2 (MPa)	Elongation (%)	size (ASTM)	(HRC)	
20°C	>1300	>850	>20	/ t. C	35/39	
700°C	>1100	>700	>30	4 to 6	-	

> ADVANTAGE OF MPN POWDER METALLURGY SOLUTION

- · Reduction of chemical microsegregation
- Homogenous microstructure
- · Reduction of grain size.

- · Isotropic properties
- · High yield strength and fatigue at high temperature
- · Better crack propagation resistance

- Flexibilities in delivery quantities and short lead time.
- Possible to have semi-finish shape close to the final part = Reduction of machining operation.
- Part weight possible between 1 to 1000 kg

