
AUBERT&DUVAL

HIGH PERFORMANCE STEELSEOR TRANSMISSIONS SYSTEMS

www.aubertduval.com

Under the load: Mechanical stresses on gears and bearings

There are three main types of stress that occur when two gears come into contact:

Tooth Root

Defect: Tooth root breakage. Stress types: Pressure,

Tooth Flank

Close to surface (<100µm) **Defect:** Pitting, Micropitting, Scuffing. Stress types: Friction, kinematics, Pressure.

Subsurface and Core Contact fatique

Defect: Tooth flank breakage. Stress types: Bending.

In power transmission systems, there are two main families of components: gears and bearings. They are subjected to different types of stress, as illustrated below:

Bearing application

The loading of a ball in contact with a raceway provides tensile stresses that can be compensated by increasing the surface hardness and introducing of the compressive stresses.

Metallurgical solution

To answer to the increase of the Hertz pressure / applied bending stress, rolling contact fatigue and higher operating temperatures, there is a need to use treatment solutions that can push-back these stresses. Different material strategies:

- · Carburizing using high tempering steel
- · Steel grade optimized for deep nitriding
- · Duplex hardening alternative (carburizing + nitriding for surface distress)

Next-generation steels for transmissions

Typical Mechanical properties

	Tempering (°C)	YS0.2 Core (MPa)	UTS Core (MPa)	K1c Core (MPa.Vm)	Hardness surface (HV10)	Case depth Hvcore + 100 (mm)
GKH™ (33CrMoV12-9)	600°C	1060	1250	180	850	0.75
GKP [®] (32CrMoNiV5)	600°C	1280	1430	80	900	0.90
AD65N™ (30CrMoV13-15)	600°C	1280	1480	100	920	0.85

Different melting route (with or without remelting process) is possible depending on the desired final mechanical and fatigue properties

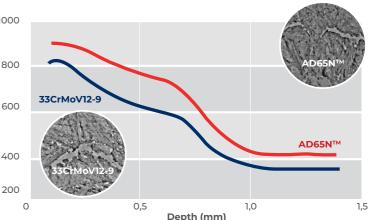
Nitriding thermochemical treatment

Capable of very deep nitriding with reduced time compared to current nitriding steels: due to the nature of the very fine microstructure and the precipitates, the kinetic of nitriding is better than standard nitriding steel.

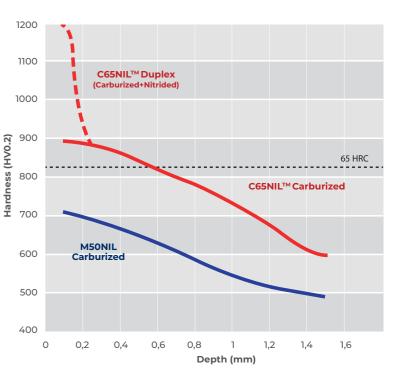
The surface hardness and core strength are greater than those of current nitriding grades.

C65NiL[™] -**New carburizing** steel for gears & bearings

A new carburizing grade the C65NIL[™] has been developed by Aubert&Duval with an original metallurgical design based on M50NIL alloy, with a higher content of Molybdenum, Vanadium and Cobalt to increase surface hardness.


C65NiL[™] is in the low Co family (<8%) and makes it possible to achieve a hardness level of more than 825 HV (about 65 HRC) after thermochemical and heat treatments with a toughness level comparable to the reference grade M50NIL.

	UTS Core (MPa)	K1c Core (MPa√m)	CHARPY V-NOTCH KV (Joules)	Surface Hardness after Carb. HV10		
M50NIL	1400	65	30	> 720		
C65NIL™	1600	40	10	> 850		


0

AD65N[™] - Nitriding steel

AD65N is a new 3% Chromium nitriding steel with slightly adjusted chemical composition in comparison with the common 33CrMoV12-9 steel and an excellent compromise between strenght and toughness.

Comparison of hardness profil between AD65N™ and 33CrMoV12-9 grade after deep nitriding (Nitriding temperature: ≈ 550°C - Duration : ≈ 120 hours.)

Comparison of hardness profil between M50NIL and C65NIL[™] grade after carburizing

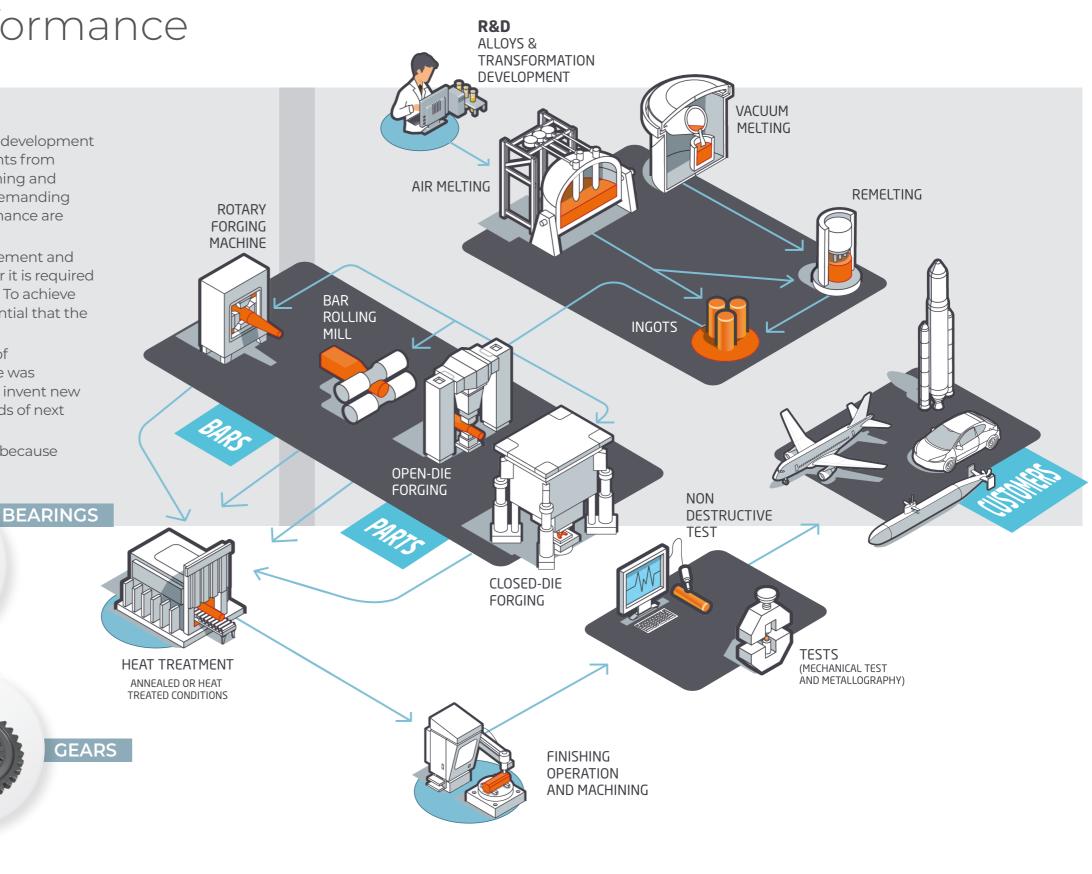
Constrained View	Normal Material Structure N	AD GRADES	EUROPEAN STANDARD	USA	USA AIR WR AMS Numerical MELTING PROCESS CHEMICAL COMPOSITION AIR AIR AIR + REMELTING VIM + VAR C Ni Cr Mo V Or			HEAT TREATMENT see key below	TDEATMENT			KCU		APPLICATIONS										
viculd indextion <	image image <t< th=""><th>TEELS FOR CARB</th><th>URIZING</th><th></th><th></th><th></th><th></th><th></th><th></th><th>REMELTING</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>l(iv/mm-</th><th>) (IN/IIIII÷)</th><th>(%)</th><th>(J/cm-)</th><th>(J)</th><th></th><th></th></t<>	TEELS FOR CARB	URIZING							REMELTING								l(iv/mm-) (IN/IIIII÷)	(%)	(J/cm-)	(J)		
KAM Mon. M Mon. M Mon. <td>And Outor Field Fi</td> <td>FADC</td> <td>10NiCrMo13-5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>×</td> <td>x</td> <td>х</td> <td>0.1 3.</td> <td>25 1.</td> <td>2 0</td> <td>u I</td> <td></td> <td>T + F + Rv 150°C</td> <td>1150</td> <td></td> <td>14</td> <td></td> <td>140</td> <td></td> <td>ized mechanical parts.</td>	And Outor Field Fi	FADC	10NiCrMo13-5						×	x	х	0.1 3.	25 1.	2 0	u I		T + F + Rv 150°C	1150		14		140		ized mechanical parts.
indication indication <td>index index i</td> <td>FADH</td> <td>14NiCrMo13-4</td> <td>UNS: K43214</td> <td>16NCD13</td> <td></td> <td>6548</td> <td>1.6657</td> <td>x</td> <td>x</td> <td>х</td> <td>0.16 3</td> <td>5.2</td> <td>1 0.2</td> <td>25</td> <td></td> <td>T + F + Rv 150°C</td> <td>1350</td> <td>1000</td> <td>14</td> <td></td> <td>140</td> <td></td> <td></td>	index i	FADH	14NiCrMo13-4	UNS: K43214	16NCD13		6548	1.6657	x	x	х	0.16 3	5.2	1 0.2	25		T + F + Rv 150°C	1350	1000	14		140		
Image: Solution in the constraint of the constraint o	INCOM I	FADS	16NiCrMo16-5						x	x	х	0.16 4.	25 1.	2 0.	.2		T + F + Rv 150°C	1450		12		90		parts subjected to hig
Here Lower Hore	interm index	FDG	20NiCrMo13-4	UNS: K41910				1.666	x	x	х	0.2 3	5.2	1 0.	.5									
index index <th< td=""><td>jame intermation intermation</td><td>FND™</td><td>15NiMoSiCr10</td><td>UNS: K51570</td><td></td><td></td><td></td><td></td><td>x</td><td>x</td><td>х</td><td>0.15 2</td><td>.5 1</td><td>1 2</td><td>2</td><td>Si:1.10</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Injector, transmission parts as gears, shafts, actuate parts exposed to fatique and in-use temperature up</td><td>ors and various wear-re to 250°C.</td></th<>	jame intermation	FND™	15NiMoSiCr10	UNS: K51570					x	x	х	0.15 2	.5 1	1 2	2	Si:1.10							Injector, transmission parts as gears, shafts, actuate parts exposed to fatique and in-use temperature up	ors and various wear-re to 250°C.
Activity Discription	Landici Normethy <td>50NILYW 13</td> <td>3MoCrNiV42-16-14</td> <td></td> <td></td> <td></td> <td>6278</td> <td>B61</td> <td></td> <td></td> <td>Х</td> <td>0.13 3</td> <td>.4 4.</td> <td>15 4.2</td> <td>25 0.</td> <td>25</td> <td>T + F + Rv 550°C</td> <td>1400</td> <td>1200</td> <td>13</td> <td></td> <td></td> <td>High performance carburizing steel grade for parts combination of rolling contact fatigue and in-use to</td> <td>requiring an excellen emperature up to 400</td>	50NILYW 13	3MoCrNiV42-16-14				6278	B61			Х	0.13 3	.4 4.	15 4.2	25 0.	25	T + F + Rv 550°C	1400	1200	13			High performance carburizing steel grade for parts combination of rolling contact fatigue and in-use to	requiring an excellen emperature up to 400
Jame Anoma Condition Con	above ibitity	CX13VD	X12CrNiMoV12-3	UNS: S64152			5719		х	x		0.12 2	.5 1:	2 1.	6 0	.3	T + F + Rv 250°C	1350	1000	13		130		Ball screws, blade prop
Calculate Control Contro Control Control	Name <	819AW	35NiCrMo16		E-35NCD16H					x		0.38	4 1.5	75 0.	.5									
NUMBER	Calculation Marked Name	NC310YW	40SiNiCrMoV10	UNS : K51570			6499				Х	0.4 1.	75 0.8	85 0.	.4 0	.2 Si:2.70	T + F + 2xRv 300 °C	2150	1790	9				on shafts).
GKH S2000/2 MN 20344 S2000/2 General Parameterization of the second parameterizatio define the second parameterization of the	GKH IN-WOM IN-WOM CITM V	C65NiL™YW									х	0.2	3 4	4 5	5 2	2 Co:5		1680	1350	15		8	High performance carburizing steel grade for parts combination of rolling contact fatigue and in-use to	requiring an excellen emperature up to 400
MAR MAR MAR A<	Mrt Solution Solut	TEELS FOR NITRI	DING																1			1		
Nr Query Monte Main Mark Main Mark Main Mark A Main Mark Ma	VARIMY VIRANUM	GKH®	33CrMoV12-9	UNS: K24340	32CDV13		6481		х	x	Х	0.3	3	3 1	1 0	.2							Components (particularly aerospace parts) requiring very good mechan properties in the core (surface hardness approximately 850 Vickers).	
GH4 4cc/M0159	Gr44 according vaccord	GKP®YW	32CrMoNiV5	UNS: K23280							Х	0.3 0	.8 1.	4 1.	2 0	.3								
CK SIGNUS 22,0000 Good SIGUE Issee	CX SUMMUSER C SUMMUSER SUMUMUSER SUMUMUSER <	GH4	40CrMoV13-9		40CDV12			1.8523	х	x	Х	0.4	3	3 1	1 0	.2							Parts for the aerospace industry exposed to high st (mechanical strength of the order of 1400 N/mm²).	resses
Control Contro Control Control	Control Contro Control Control	GK3 31	1CrMo12/32CrMo12		30CD12	1.8564			х	x	х	0.3	177	3 0.	.4		T + Rv 625°C	1000	850	18	150		Gears, spindles, machine tool components, various	mechanical parts
ASO'W 80McC/V2-26 MIS: THISO MSE MOD E400C/V4 15551 15552 649 Image: Comparison of the co	ASOVE NINS TIRS0 FORDE N ForDE N TiRS0 ForDE N TiRS0 ForDE N	AD65N™	30CrMoV13-15						х	х	х	0.3 <	0.1 3.	.2 1.	.5 0.4	45 Mn:0.2		1480 1320					High performance carburizing steel grade for parts combination of rolling contact fatigue and in-use to	requiring an exceller emperature up to 400
ASOYW 80MoCr/42-16 UNS:T1350 E-80DC/40 1355 649 Image: Marking and Marking an	RASOVV NNR. T1350 VMR. T1350 F4BOC M 1355 649 Image: Construction of the construction		NING STEELS																					
DISNU® X40CM0VNI62 UNS: S42025 I 14125 592 14123 X I 0.42 16 18 0.35 N.02 T + F + V 180° Inadd Inadd <thi< td=""><td>XDISNUP X40CM0VNI62 UNS 542025 I 1412 592 14123 X X X V</td><td>RA50YW</td><td>80MoCrV42-16</td><td></td><td>E-80DCV40</td><td>1.3551 1.3552</td><td>6491</td><td></td><td></td><td></td><td>х</td><td>0.83</td><td>4.</td><td>15 4.2</td><td>25</td><td></td><td>T + 3xRv 550°C</td><td>ness: 60 / 63</td><td></td><td></td><td></td><td></td><td>Aerospace bearings exposed to high stresses.</td><td></td></thi<>	XDISNUP X40CM0VNI62 UNS 542025 I 1412 592 14123 X X X V	RA50YW	80MoCrV42-16		E-80DCV40	1.3551 1.3552	6491				х	0.83	4.	15 4.2	25		T + 3xRv 550°C	ness: 60 / 63					Aerospace bearings exposed to high stresses.	
XDIGN XSOCrSIMUVNIG-1 UNS: S42716 Image: Space Space Image: Spac	XDIGN XDIGN VINS: 542716 UNS: 542716 Separation	XD15NW®	X40CrMoVN16-2	UNS: S42025		1.4123	5925	1.4123		x		0.42	1	6 1.	8 0.	35 N:0.2	T + F + Rv 180°C	hard- ness:					Bearings, ball screws, valve seats, guide collars.	
FDMA 30NCM016 SONCD16 Image: Comparison of the comparison of	FDMA 30Nic/Mol6 30NCD6 Image: Comparison of the comparison of	XDI6N >	K50CrSiMnVN16-1	UNS: S42716			5926		х			0.5	1	6	0	.3 V:2	T + F + Rv 180°C	hard- ness:					Bearings, ball-screws for industrial applications.	
41NIC/M07-3-2 AISI/SAE: E4340 6414 1.6563 X X VX 0.4 1.8 0.8 0.25 11 + RV 600°C 1100 950 17 100 (shafts, gears, various safety-critical mechanical parts). NC40S 40NiSiCrMo7 AISI: 300M 6417 6417 X X 0.4 1.8 0.8 0.4 Si: 1.6 T + 2xRv 300°C 2050 170 12 50 Shafts, gears, various safety-critical mechanical parts, various heave	NC40M 4INICMO/-3-2 AISI / SAE: E4340 6414 1.6563 X X V 0.4 1.8 0.8 0.25 1 1.00 950 17 100 (shafts, gears, various safety-critical mechanical parts). NC40S 40NiSiCrMo7 AISI: 300M 6417 6419 X V 0.4 1.8 0.8 0.4 Si: 1.6 T + 2xRv 300°C 250 170 12 50 Shafts, gears, various safety-critical mechanical parts). NC40S 40NiSiCrMo7 AISI: 300M 6417 X X 0.4 1.8 0.8 0.4 Si: 1.6 T + 2xRv 300°C 250 170 12 50 Shafts, gears, various safety-critical mechanical parts, various heavily KEY TO HEAT TREATMENT SYMBOLS X X X V V V V V V Si: 1.6 T + 2xRv 300°C 250 170 12 50 Shafts, gears, various safety-critical mechanical parts. V V V V V V V V V V V V V V V V V	FDMA	30NiCrMo16		30NCD16				x	x		0.3 3	.5 1.	2 0.4	45			1750					Parts requiring excellent fatigue and impact resistance.	
ALSI: 300M Alsi: 300M 6419 X 0.4 I.8 0.4 St. 1.6 T + Rv 600°C 1450 1300 14 60 stressed aerospace mechanical parts.	NC40S 40NISIC/M07 AIST 300M 6419 X 0.4 1.8 0.4 SIT 1.6 T + Rv 600°C 1450 1300 14 60 stressed aerospace mechanical parts. KEY TO HEAT TREATMENT SYMBOLS Sub-zero treatment	NC40M	41NiCrMo7-3-2					1.6563	x	x		0.4 1	.8 0	.8 0.2	25		T + Rv 600°C	1100	950	17	100			
	Sub-zero treatment F	NC40S	40NiSiCrMo7	AISI: 300M						x		0.4 1	.8 0.1	B5 0.	.4	Si: 1.6								s, various heavily
	Sub-zero treatment F	I			I	1	I		I	1						I	1	1	1			1		
																					Sub-	zero trea		

Thermo-mechanical treatment

The list of products in the table is not exhaustive, please consult us for other materials.

Т

Power in motion : Steels that drive performance


Since 1907 Aubert & Duval has been a recognized leader in the development of high-performance steels, working hand in hand with its clients from the earliest stages of material selection. We specialize in designing and manufacturing tailor-made steel grades that meet the most demanding requirements in sectors where reliability, precision and performance are non-negotiable.

A transmission system is a heart of mechanical energy management and have two functions: transferring mechanical power to wherever it is required and transmitting the motion from one component to another. To achieve this objective, even under the most severe conditions, it is essential that the components are produced from the finest materials available.

Aubert & Duval has a proven track record in the development of transmission steels, dating back to 1970 when the GKH™ grade was introduced. Since then, we have worked with our customers to invent new alloys, such as AD65N[™] and C65NiL[™] which will meet the needs of next generation transmissions systems.

Our aim is to achieve excellence in each of your components—because performance starts with the right material.

BALL SCREW

Design by 🕄 irweego www.irweego.com - Aubert & Duval - 06-2025

The information and the data presented herein are typical or average values and are not a guarantee of maximum or minimum values. Applications specifically suggested for material described herein are made solely for the purpose of illustration to enable the reader to make his own evaluation and are not intended as warranties, either express or implied, of fitness for these or other purposes. Aubert & Duval's liability shall not extend, under any circumstances, to the choice of the Product and its consequences. © Crédit : Aubert & Duval, SKF, Christian42 - Fotolia, Shuterstock.

www.aubertduval.com