

SPECIFICATIONS

UNS AMS

: N09706 : 5703

Nickel-based Alloy PER706

NiFe38Cr16Nb

COMPOSITION

Carbon	< 0.04
Iron	37.00
Chromium	16.00
Nobium + Tantalum	2.90
Titanium	1.80
Aluminum	0.20
Nickel	Base

TYPICAL MECHANICAL PROPERTIES

On metal supplied ready for use:

• Tensile test at ambient temperature:

- UTS:	1260 N/mm ²
- 0.2 % Yield strength:	1000 N/mm ²
- Elongation (5d):	18 %

• Rapid tensile test at temperature:

 Rapid tensile test at tempe 	rature:
- at 200°C:	
- UTS:	1185 N/mm ²
- 0.2 % Yield st	rength: 940 N/mm ²
- at 400°C:	
- UTS:	1100 N/mm ²
- 0.2 % Yield st	rength: 890 N/mm ²
- at 600°C:	
- UTS:	1015 N/mm ²
- 0.2 % Yield st	rength: 830 N/mm ²
- Elongation (5	d): 19 %

• Creep:

Temperature	Average load in N/mm ² causing creep
in °C	fracture in 1000 hrs
600	800
650	615
700	510

APPLICATIONS -

- Aerospace industry: compressor discs.
- Marine and land-based machines: gas turbines.

CHARACTERISTICS _

Precipitation hardened, nickel-based superalloy with:

- Good resistance to oxidation.
- Good mechanical properties at high temperature up to 650°C.

HEAT TREATMENT

Solution treatment and precipitation heat treatment:
 980°C / Air cool + 720°C / 8 hrs / furnace cool + 620°C / 8 hrs / Air cool.

PHYSICAL PROPERTIES

• Density:		 Thermal conductivity in W.m/m².°C: 	
- at 20°C:	8.1	- at 20°C:	12.0
- at 400°C:	8.0	- at 200°C:	15.0
- at 800°C:	7.8	- at 400°C:	18.5
 Mean coefficient of expansion in m/m.°C: 		- at 600°C:	21.5
- between 20°C and 200°C:		 Specific heat in J/g.°C: 	
- between 20°C and 400°C:		- at 20°C:	0.44
- between 20°C and 600°C:	16.2 x 10 ⁻⁶	- at 200°C:	0.49
 Modulus of elasticity in N/mm²: 		- at 400°C:	0.54
- at 20°C:	211 x 10 ³	- at 600°C:	0.60
- at 200°C:	200×10^{3}	- at 800°C:	0.65
	188×10^{3}	- at 1000°C:	0.70
- at 400°C:			
- at 600°C:	175 x 10 ³		
- at 800°C:	160 x 10 ³		

Forging _____

• 1150/950°C

Contact:

www.aubertduval.com

The data provided in this document represent typical or average values rather than maximum or minimum guaranteed values. The applications indicated for the grades described are given as guidance only in order to help the reader in his personal assessment. Please note that these do not constitute a guarantee whether implicit or explicit as to whether the grade selected is suited to specific requirements. Aubert & Duval's liability shall not under any circumstances extend to product selection or to the consequences of that selection.

