

Pearl[®]Micro ABD[®]-

Powder for Additive Manufacturing

MATERIAL OVERVIEW

- An age-hardenable nickel-based superalloy designed specifically for use as feedstock in powder bed fusion. ABD[®]-900AM is optimised for high creep and tensile strength, and corrosion/oxidation resistance, with a working temperature range up to 900°C in its agehardened state.
- The new alloy has excellent creep strength similar to alloy 939 and Ni 738 – while having superior resistance to cracking during manufacture and heat treatment.

Designed to be free of solidification, liquidation and strain-age cracks, ABD[®]-900AM is 40% **y**' phase and showcases exceptional printability for such a high temperature strengthened alloy. It is suitable for complex components within the Aerospace, Power, Automotive and Space industries.

KEY PROPERTIES

	Yield strength (MPa)	z 574 xy 568	
Mechanical ^{1,2}	Ultimate tensile strength (MPa)	z 582 xy 593	
(900°C)	Elongation at failure %	z 13 xy 7	
	Area reduction at failure %	z 12 xy 7	
Thermo- physical ³	Thermal conductivity (W(m°C) ⁻¹)	11.0 - 30.1	
(25-1200°C)	CTE (Linear)/ x10-6°C ⁻¹	11.4 - 19.2	
Dlauatia a 14	Density/ g cm ⁻³	8.395	
Physical ⁴	Melting range²/ °C	1305-1380	

All measurements are for the fully heat treated alloy printed with a layer thickness of 30 µm.

¹strain rate of 10⁻³s⁻¹, ²after recrystallisation anneal and full heat treatment, ³after full heat treatment, ⁴as-printed

PRINTABILITY


ABD[®]-900AM shows high part density and no cracking when printed with standard Ni 718 parameters.

			•	
	•			i
500 µm				

POWDER CHARACTERISITICS

Particle size distributions:

Laser Beam Melting (powder bed): 15-53 µm Electron Beam Melting (powder bed): 45-106 µm Directed energy deposition (LMD): 45-106 µm Custom size distributions available on request

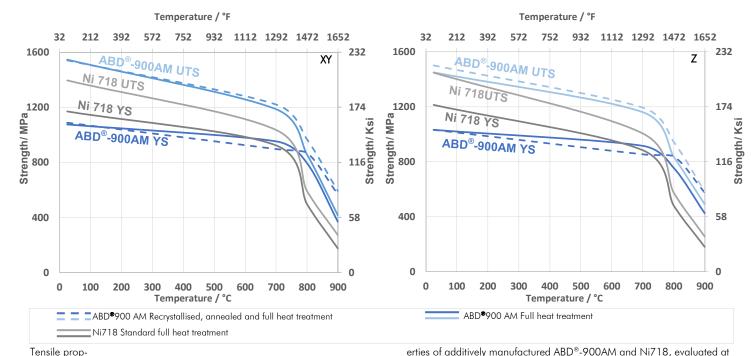
ABD[®]-900AM is well suited for gas atomisation

ABD®-900AM is available in batch sizes suitable for R&T and full production.

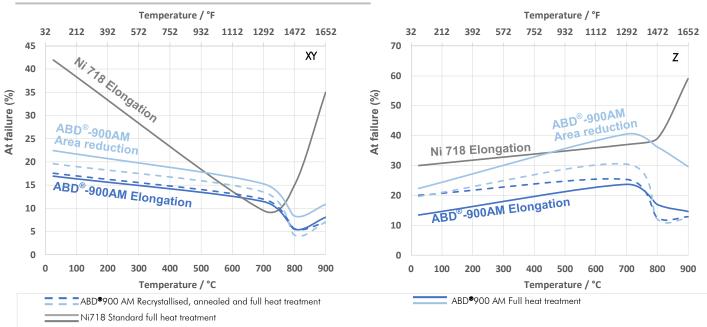
Contact: powder@eramet.com eramet

PDS_PearlMicro-ABD-900AM_EN_V2_2020

www.aubertduval.com


The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval. ABD® is a registered trademark of Alloyed (formely OxMet Technologies).

Pearl[®]Micro ABD[®]-900AM


TENSILE PROPERTIES

Tensile prop-

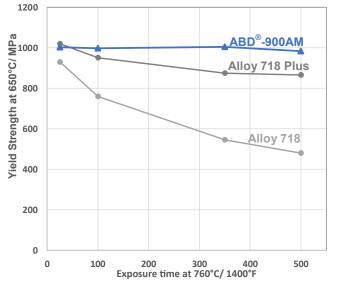
a strain rate of 10-3s-1, all other test conditions in accordance to ASTM E8/E8M-16a/E21. No HIP applied. Yield Strength (YS) shown is Rp0.2% stress, Ultimate

TENSILE DUCTILITY & REDUCTION OF AREA

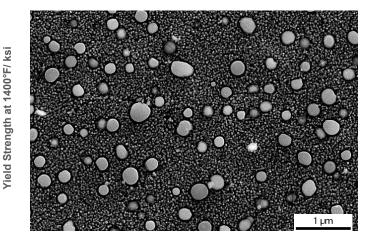
Tensile properties of additively manufactured ABD®-900AM and Ni718, evaluated at a strain rate of 10⁻³ s⁻¹, all other test conditions in accordance to ASTM E8/E8M-16a/E21. No HIP applied. Elongation and Area Reduction were measured after failure as per the standards.

Contact: powder@eramet.com

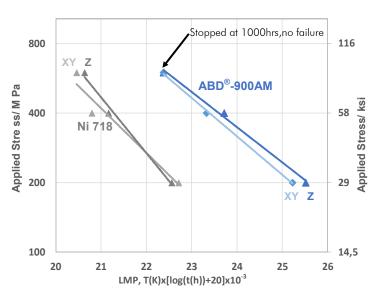
www.aubertduval.com


The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval.

LONG TERM STABILITY

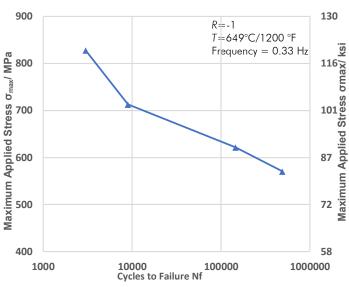


Pearl[®]Micro ABD[®]-900AM


Tensile properties of additively manufactured ABD®-900AM after full heat treatment cycle followed by long term heat exposure. Yield strength evaluated at 650° C with a strain rate of 10^{-4} s⁻¹. Data for Alloy 718 and Alloy 718Plus taken from "Advanced Materials and

Processes, December 2006"

SEM image of fully heat-treated ABD®-900AM after electro-chemical etching in 10% phosphoric acid showing the bi-modal $\gamma^\prime\text{-}\text{phase}$ distribution: 50 and 200 nm


STRESS RUPTURE PROPERTIES

Stress rupture properties of additively manufactured ABD®-900AM after recrystallisation anneal and full heat treatment cycle. Tested in accordance to ASTM E139. Larson-Miller Parameter evaluated with Temperature (T) in Kelvin and Time (t) in hours. Ni718 is additively manufactured and fully heat treated.

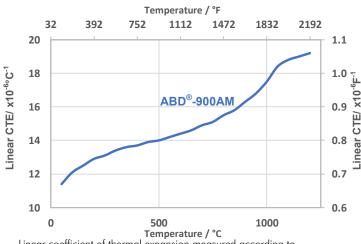
eramet

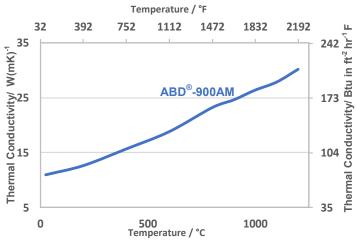
FATIGUE PROPERTIES

Low cycle fatigue properties of additively manufactured ABD®-900AM after full heat treatment cycle. Tested in accordance to ASTM E606.

Contact: powder@eramet.com

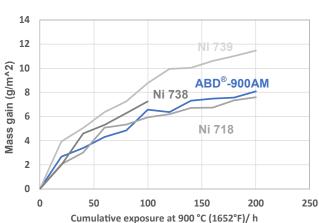
www.aubertduval.com


The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval. ABD® is a registered trademark of Alloyed (formely OxMet Technologies).

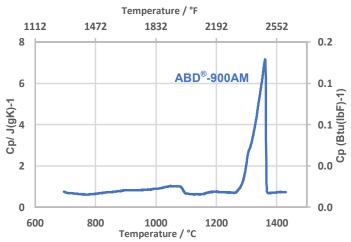


Pearl[®]Micro ABD[®]-900AM

THERMOPHYSICAL PROPERTIES

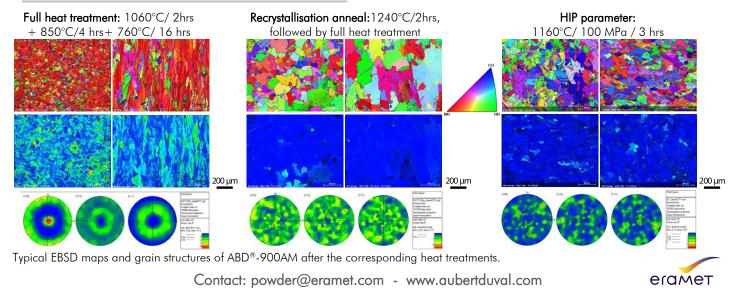


Linear coefficient of thermal expansion measured according to ASTM E228. Average of heating and cooling curves.¹



Thermal conductivity (λ) of ABD[®]-900AM is calculated according to ASTM standards from measured values of density (ρ), specific heat capacity (Cp), and thermal diffusivity (a): $\lambda = \rho$ Cpa.¹

¹ABD®-900AM after full heat treatment, ²ABD®-900AM in an as-printed condition



Mass gain of ABD[®]-900AM and other alloys during the course of cyclic oxidation in laboratory air over 200 hrs.¹

Specific heat (Cp) of ABD®-900AM, measured according to ASTM E1269.²

MICROSTRUCTURE & HEAT TREATMENT

The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval. ABD® is a registered trademark of Alloyed (formely OxMet Technologies).