



# Pearl<sup>®</sup>Micro ABD<sup>®</sup>-8

# **Powder for Additive Manufacturing**



#### MATERIAL OVERVIEW

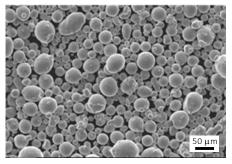
- An age-hardenable nickel-based superalloy designed specifically for use as feedstock in powder bed fusion with resistance to cracking during and after AM and heat treatment. ABD®-850AM is optimised for damage tolerance, thermal stability, and corrosion/ oxidation resistance, with a working temperature range up to 850°C in its age-hardened state.
- The new alloy has excellent thermal stability and creep strength, surpassing alloy 718.

ABD®-850AM is designed to be free of solidification, liquidation and strain-age cracks and showcases exceptional printability for such a high temperature  $\gamma'$ strengthened alloy, making it suitable for complex components within the Aerospace, Power, Automotive and Space industries.

# **KEY PROPERTIES**

| Mechanical<br>(800°C)         | Yield strength (MPa)                            | 607 ± 16        |
|-------------------------------|-------------------------------------------------|-----------------|
|                               | Ultimate tensile strength (MPa)                 | 749 ± 8         |
|                               | Elongation at failure (%)                       | 8.5 Z,<br>58 XY |
|                               | Hardness (HV30)                                 | 476 ± 6         |
| Thermophysical<br>(25-1200°C) | Thermal conductivity<br>(W(m°C) <sup>-1</sup> ) | 10.7–28.5       |
|                               | CTE (Linear) (x10-6 °C-1)                       | 11.5–18.7       |
| Physical (25°C)               | Density (g cm-3)                                | 8.44            |

All measurements are for the fully heat treated alloy printed with a layer thickness of 30  $\mu$ m.


### PARTICLE SIZE DISTRIBUTIONS

| ABD <sup>®</sup> -850AM |             |     |  |
|-------------------------|-------------|-----|--|
| shows high part         |             |     |  |
| density and no          |             |     |  |
| cracking when           |             |     |  |
| printed with            | a Breathing |     |  |
| standard                |             |     |  |
| alloy 718               |             |     |  |
| parameters.             |             | · . |  |
|                         | 500 um      | •   |  |
|                         | 000 µm      |     |  |

# POWDER CHARACTERISITICS

Particle size distributions:

Laser Beam Melting (powder bed): 15-53 µm Electron Beam Melting (powder bed): 45-106 µm Directed energy deposition (LMD): 45-106 µm Custom size distributions available on request

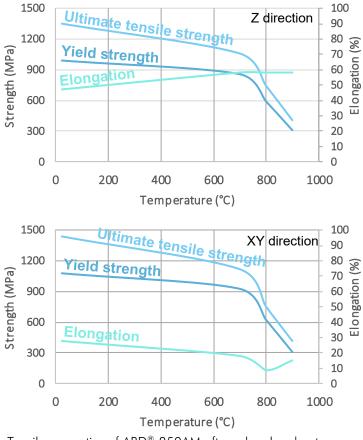


ABD®-850AM is well suited for gas atomisation

ABD<sup>®</sup>-850AM is available in batch sizes suitable for R&T and full production.

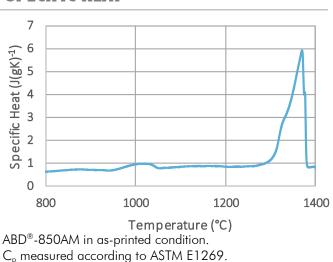


The above is for information only and does not create any binding contractual obligations. Pearl® is a registered trademark of Erasteel and is used under license by Aubert & Duval.


Contact: powder@eramet.com www.aubertduval.com

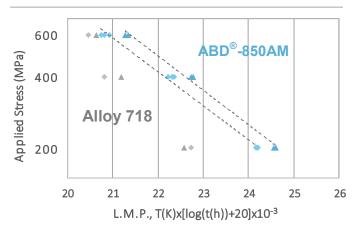





Pearl®Micro ABD®-900AM

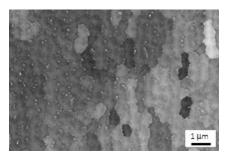
#### **TENSILE PROPERTIES**




Tensile properties of  $\mathsf{ABD}^{\circledast}\text{-}850\mathsf{AM}$  after sub-solvus heat treatment.

Measured in accordance to ASTM E8/E8M-16a/E21.

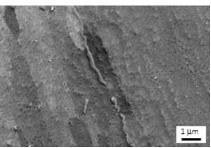



#### **SPECIFIC HEAT**

**CREEP LIFE** 



Stress rupture properties of  $\mathsf{ABD}^{\circledast}\text{-}850\mathsf{AM}$  after sub-solvus heat treatment.


#### **MICROSTRUCTURE**



As-printed XY-plane microstructure after processing with 30  $\mu$ m layer thickness and 2D energy density of 2.5 Jmm<sup>-2</sup>.

Microstructure after final heat treatment

1 шт



Microstructure after thermal exposure at 760°C for 1,000 hours showing excellent microstructural stability



Contact: powder@eramet.com www.aubertduval.com